Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Commun ; : 100885, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504521

ABSTRACT

Inorganic phosphorus (Pi) deficiency significantly impacts plant growth, development, and photosynthetic efficiency. This study evaluated 206 rice accessions from a MiniCore population under both Pi-sufficient (Pi+) and Pi-starvation (Pi-) conditions in the field to assess photosynthetic phosphorus use efficiency (PPUE), defined as the ratio of AsatPi- to AsatPi+. A genome-wide association study and differential gene expression analyses identified an acid phosphatase gene (ACP2) that responds strongly to phosphate availability. Overexpression and knockout of ACP2 led to a 67% increase and 32% decrease in PPUE, respectively, compared with wild type. Introduction of an elite allele A, by substituting the v5 SNP G with A, resulted in an 18% increase in PPUE in gene-edited ACP2 rice lines. The phosphate-responsive gene PHR2 was found to transcriptionally activate ACP2 in parallel with PHR2 overexpression, resulting in an 11% increase in PPUE. Biochemical assays indicated that ACP2 primarily catalyzes the hydrolysis of phosphoethanolamine and phospho-L-serine. In addition, serine levels increased significantly in the ACP2v8G-overexpression line, along with a concomitant decrease in the expression of all nine genes involved in the photorespiratory pathway. Application of serine enhanced PPUE and reduced photorespiration rates in ACP2 mutants under Pi-starvation conditions. We deduce that ACP2 plays a crucial role in promoting photosynthesis adaptation to Pi starvation by regulating serine metabolism in rice.

3.
Nucleic Acids Res ; 51(4): 1823-1842, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36660855

ABSTRACT

Photosynthesis is the most temperature-sensitive process in the plant kingdom, but how the photosynthetic pathway responds during low-temperature exposure remains unclear. Herein, cold stress (4°C) induced widespread damage in the form DNA double-stranded breaks (DSBs) in the mesophyll cells of rice (Oryza sativa), subsequently causing a global inhibition of photosynthetic carbon metabolism (PCM) gene expression. Topoisomerase genes TOP6A3 and TOP6B were induced at 4°C and their encoded proteins formed a complex in the nucleus. TOP6A3 directly interacted with KU70 to inhibit its binding to cold-induced DSBs, which was facilitated by TOP6B, finally blocking the loading of LIG4, a component of the classic non-homologous end joining (c-NHEJ) pathway. The repression of c-NHEJ repair imposed by cold extended DSB damage signaling, thus prolonging the inhibition of photosynthesis in leaves. Furthermore, the TOP6 complex negatively regulated 13 crucial PCM genes by directly binding to their proximal promoter regions. Phenotypically, TOP6A3 overexpression exacerbated the γ-irradiation-triggered suppression of PCM genes and led to the hypersensitivity of photosynthesis parameters to cold stress, dependent on the DSB signal transducer ATM. Globally, the TOP6 complex acts as a signal integrator to control PCM gene expression and synchronize cold-induced photosynthesis inhibition, which modulates carbon assimilation rates immediately in response to changes in ambient temperature.


Subject(s)
DNA Topoisomerases , Oryza , Photosynthesis , Carbon/metabolism , DNA End-Joining Repair , DNA Repair , DNA-Binding Proteins/genetics , Mesophyll Cells/metabolism , Oryza/enzymology , Oryza/physiology , DNA Topoisomerases/physiology , Cold Temperature
4.
Plant Commun ; 4(1): 100426, 2023 01 09.
Article in English | MEDLINE | ID: mdl-35986514

ABSTRACT

C4 photosynthesis evolved from ancestral C3 photosynthesis by recruiting pre-existing genes to fulfill new functions. The enzymes and transporters required for the C4 metabolic pathway have been intensively studied and well documented; however, the transcription factors (TFs) that regulate these C4 metabolic genes are not yet well understood. In particular, how the TF regulatory network of C4 metabolic genes was rewired during the evolutionary process is unclear. Here, we constructed gene regulatory networks (GRNs) for four closely evolutionarily related species from the genus Flaveria, which represent four different evolutionary stages of C4 photosynthesis: C3 (F. robusta), type I C3-C4 (F. sonorensis), type II C3-C4 (F. ramosissima), and C4 (F. trinervia). Our results show that more than half of the co-regulatory relationships between TFs and core C4 metabolic genes are species specific. The counterparts of the C4 genes in C3 species were already co-regulated with photosynthesis-related genes, whereas the required TFs for C4 photosynthesis were recruited later. The TFs involved in C4 photosynthesis were widely recruited in the type I C3-C4 species; nevertheless, type II C3-C4 species showed a divergent GRN from C4 species. In line with these findings, a 13CO2 pulse-labeling experiment showed that the CO2 initially fixed into C4 acid was not directly released to the Calvin-Benson-Bassham cycle in the type II C3-C4 species. Therefore, our study uncovered dynamic changes in C4 genes and TF co-regulation during the evolutionary process; furthermore, we showed that the metabolic pathway of the type II C3-C4 species F. ramosissima represents an alternative evolutionary solution to the ammonia imbalance in C3-C4 intermediate species.


Subject(s)
Flaveria , Flaveria/genetics , Carbon Dioxide/metabolism , Gene Regulatory Networks , Photosynthesis/genetics
5.
Int J Mol Sci ; 23(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35886963

ABSTRACT

Ethylene promotes ripening in fruits as well as the biosynthesis of anthocyanins in plants. However, the question of which ethylene response factors (ERFs) interact with the genes along the anthocyanin biosynthesis pathway is yet to be answered. Herein, we conduct an integrated analysis of transcriptomes and metabolome on fruits of two mulberry genotypes ('Zijin', ZJ, and 'Dashi', DS, with high and low anthocyanin abundance, respectively) at different post-flowering stages. In total, 1035 upregulated genes were identified in ZJ and DS, including MYBA in the MBW complex and anthocyanin related genes such as F3H. A KEGG analysis suggested that flavonoid biosynthesis and plant hormone signaling transduction pathways were significantly enriched in the upregulated gene list. In particular, among 103 ERF genes, the expression of ERF5 showed the most positive correlation with the anthocyanin change pattern across both genotypes and in the post-flowering stages, with a Pearson correlation coefficient (PCC) of 0.93. Electrophoresis mobility shift assay (EMSA) and luciferase assay suggested that ERF5 binds to the promoter regions of MYBA and F3H and transcriptionally activates their gene expression. We elucidated a potential mechanism by which ethylene enhances anthocyanin accumulation in mulberry fruits and highlighted the importance of the ERF5 gene in controlling the anthocyanin content in mulberry species. This knowledge could be used for engineering purposes in future mulberry breeding programs.


Subject(s)
Anthocyanins , Morus , Anthocyanins/metabolism , Ethylenes/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Morus/genetics , Morus/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
6.
J Exp Bot ; 73(14): 4923-4940, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35661874

ABSTRACT

The genes in the subfamily PG1ß (beta subunit of poly-galacturonase isoenzyme 1) have a clear effect on the biosynthesis pathway of pectin, a main component of the cell wall. However, the detailed functions of the PG1ß-like gene members in Arabidopsis (AtPG1-3) have not yet been determined. In this study, we investigated their functional roles in response to aluminum (Al) stress. Our results indicate that the PG1ß-like gene members are indeed involved in the Al-stress response and they can modulate its accumulation in roots to achieve optimum root elongation and hence better seedling growth. We found that transcription factor EIN3 (ETHYLENE INSENSITIVE 3) alters pectin metabolism and the EIN3 gene responds to Al stress to affect the pectin content in the root cell walls, leading to exacerbation of the inhibition of root growth, as reflected by the phenotypes of overexpressing lines. We determined that EIN3 can directly bind to the promoter regions of PG1-3, which act downstream of EIN3. Thus, our results show that EIN3 responds to Al stress in Arabidopsis directly through regulating the expression of PG1-3. Hence, EIN3 mediates their functions by acting as a biomarker in their molecular biosynthesis pathways, and consequently orchestrates their biological network in response to Al stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Aluminum/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Nuclear Proteins/metabolism , Pectins/metabolism
7.
Plants (Basel) ; 12(1)2022 Dec 23.
Article in English | MEDLINE | ID: mdl-36616201

ABSTRACT

Quinoa constitutes among the tolerant plants to the challenging and harmful abiotic environmental factors. Quinoa was selected as among the model crops destined for bio-saline agriculture that could contribute to the staple food security for an ever-growing worldwide population under various climate change scenarios. The auxin response factors (ARFs) constitute the main contributors in the plant adaptation to severe environmental conditions. Thus, the determination of the ARF-binding sites represents the major step that could provide promising insights helping in plant breeding programs and improving agronomic traits. Hence, determining the ARF-binding sites is a challenging task, particularly in species with large genome sizes. In this report, we present a data fusion approach based on Dempster-Shafer evidence theory and fuzzy set theory to predict the ARF-binding sites. We then performed an "In-silico" identification of the ARF-binding sites in Chenopodium quinoa. The characterization of some known pathways implicated in the auxin signaling in other higher plants confirms our prediction reliability. Furthermore, several pathways with no or little available information about their functions were identified to play important roles in the adaptation of quinoa to environmental conditions. The predictive auxin response genes associated with the detected ARF-binding sites may certainly help to explore the biological roles of some unknown genes newly identified in quinoa.

8.
Front Plant Sci ; 12: 632676, 2021.
Article in English | MEDLINE | ID: mdl-33763094

ABSTRACT

The root is in direct contact with soil. Modulation of root growth in response to alterations in soil conditions is pivotal for plant adaptation. Extensive research has been conducted concerning the adjustment of root elongation and architecture in response to environmental factors. However, little is known about the modulation of the root growth trajectory, as well as its hormonal mechanism. Here we report that abscisic acid (ABA) participated in controlling root growth trajectory. The roots upon ABA treatment or from ABA-accumulation double mutant cyp707a1,3 exhibit agravitropism-like growth pattern (wavy growth trajectory). The agravitropism-like phenotype is mainly ascribed to the compromised shootward transportation of auxin since we detected a reduced fluorescence intensity of auxin reporter DR5:VENUS in the root epidermis upon exogenous ABA application or in the endogenous ABA-accumulation double mutant cyp707a1,3. We then tried to decipher the mechanism by which ABA suppressed shootward auxin transport. The membrane abundance of PIN2, a facilitator of shootward auxin transport, was significantly reduced following ABA treatment and in cyp707a1,3. Finally, we revealed that ABA reduced the membrane PIN2 intensity through suppressing the PIN2 expression rather than accelerating PIN2 degradation. Ultimately, our results suggest a pivotal role for ABA in the root growth trajectory and the hormonal interactions orchestrating this process.

9.
Biochim Biophys Acta Bioenerg ; 1862(5): 148383, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33513364

ABSTRACT

Drought is an abiotic scourge, one of the major environmental stress factors that adversely affect plant growth and photosynthesis machinery through a disruption of cell organelles, arrangement thylakoid membranes and the electron transport chain. Herein, we probed the effect of drought stress on photosynthetic performance of Chenopodium quinoa Willd. Beforehand, plants were subjected to water deficit (as 15% Field Capacity, FC) for one (D-1W) or two weeks (D-2W), and were then re-watered at 95% FC for 2 weeks. Light and electron microscopy analysis of leaves showed no apparent changes in mesophyll cell organization and chloroplast ultrastructure after one week of drought stress, while a swelling of thylakoids and starch accumulation were observed after the prolonged drought (D-2W). The latter induced a decrease in both PSI and PSII quantum yields which was accompanied by an increase in F0 (minimum fluorescence) and a decline in Fm (maximum fluorescence). Drought stress influenced the fluorescence transients, where the major changes at the OJIP prompt FI level were detected in the OJ and IP phases. Prolonged drought induced a decrease in chl a fluorescence at IP phase which was readjusted and established back after re-watering and even more an increase was observed after 2 weeks of recovery. The maximum quantum yield of primary photochemistry (φPo) was unaffected by the different drought stress regimes. Drought induced an increase in the ABS/RC and DI0/RC ratios which was concurrent to a stable φPo (maximum quantum yield of PSII primary photochemistry). A substantial decrease in PI(ABS) was detected especially, during severe drought stress (D-2W) suggesting a drop in the PSII efficiency and the level of electron transport through the plastoquinone pool (PQ pool) towards oxidized PSI RCs (P700+). The immunoblot analysis of the main PSII proteins revealed considerable changes in the D1, D2, CP47, OEC, PsbQ and LHCII proteins under drought. These changes depend on the stress duration and recovery period. The main message of this investigation is the elevated recovery capacities of PSII and PSI photochemical activities after re-watering.


Subject(s)
Chenopodium quinoa/physiology , Chloroplasts/metabolism , Droughts , Photosynthesis , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Stress, Physiological , Electron Transport , Recovery of Function
10.
Photosynth Res ; 150(1-3): 137-158, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33159615

ABSTRACT

Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.


Subject(s)
Oryza , Chlorophyll , Chlorophyll A , Fluorescence , Genome-Wide Association Study , Oryza/genetics , Oryza/metabolism , Photosynthesis , Photosystem II Protein Complex/genetics , Photosystem II Protein Complex/metabolism
11.
Plant J ; 104(5): 1334-1347, 2020 12.
Article in English | MEDLINE | ID: mdl-33015858

ABSTRACT

The acceleration of stomatal closure upon high to low light transition could improve plant water use efficiency and drought tolerance. Herein, using genome-wide association study, we showed that the genetic variation in OsNHX1 was strongly associated with the changes in τcl , the time constant of stomatal closure, in 206 rice accessions. OsNHX1 overexpression in rice resulted in a decrease in τcl , and an increase in biomass, grain yield under drought. Conversely, OsNHX1 knockout by CRISPR/CAS9 shows opposite trends for these traits. We further found three haplotypes spanning the OsNHX1 promoter and CDS regions. Two among them, HapII and HapIII, were found to be associated with a high and low τcl , respectively. A near-isogenic line (NIL, S464) was developed through replacing the genomic region harboring HapII (~10 kb) from MH63 (recipient) rice cultivar by the same sized genomic region containing Hap III from 02428 (donor). Compared with MH63, S464 shows a reduction by 35% in τcl and an increase by 40% in the grain yield under drought. However, under normal conditions, S464 maintains closely similar grain yield as MH63. The global distribution of the two OsNHX1 haplotypes is associated with the local precipitation. Taken together, the natural variation in OsNHX1 could be utilized to manipulate the stomatal dynamics for an improved rice drought tolerance.


Subject(s)
Droughts , Oryza/physiology , Plant Proteins/genetics , Plant Stomata/physiology , Biomass , Dehydration/genetics , Gene Expression Regulation, Plant , Haplotypes , Light , Mutation , Oryza/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plants, Genetically Modified , Selection, Genetic
12.
Front Plant Sci ; 11: 1009, 2020.
Article in English | MEDLINE | ID: mdl-32733515

ABSTRACT

The present study reveals contrasting responses of photosynthesis to salt stress in two C4 species: a glycophyte Setaria viridis (SV) and a halophyte Spartina alterniflora (SA). Specifically, the effect of short-term salt stress treatment on the photosynthetic CO2 uptake and electron transport were investigated in SV and its salt-tolerant close relative SA. In this experiment, at the beginning, plants were grown in soil then were exposed to salt stress under hydroponic conditions for two weeks. SV demonstrated a much higher susceptibility to salt stress than SA; while, SV was incapable to survive subjected to about 100 mM, SA can tolerate salt concentrations up to 550 mM with slight effect on photosynthetic CO2 uptake rates and electrons transport chain conductance (gETC ). Regardless the oxygen concentration used, our results show an enhancement in the P700 oxidation with increasing O2 concentration for SV following NaCl treatment and almost no change for SA. We also observed an activation of the cyclic NDH-dependent pathway in SV by about 2.36 times upon exposure to 50 mM NaCl for 12 days (d); however, its activity in SA drops by about 25% compared to the control without salt treatment. Using PTOX inhibitor (n-PG) and that of the Qo-binding site of Cytb6/f (DBMIB), at two O2 levels (2 and 21%), to restrict electrons flow towards PSI, we successfully revealed the presence of a possible PTOX activity under salt stress for SA but not for SV. However, by q-PCR and western-blot analysis, we showed an increase in PTOX amount by about 3-4 times for SA under salt stress but not or very less for SV. Overall, this study provides strong proof for the existence of PTOX as an alternative electron pathway in C4 species (SA), which might play more than a photoprotective role under salt stress.

13.
J Plant Physiol ; 253: 153244, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32818766

ABSTRACT

This report reveals the effects of salt on the photosynthetic electron transport and transcriptome of the glycophyte Setaria viridis (S. viridis) and its salt-tolerant close relative halophyte Spartina alterniflora (S. alterniflora). S. viridis was unable to survive exposed to sodium chloride (NaCl) levels higher than 100 mM, in contrast, S. alterniflora could tolerate NaCl up to 550 mM, with negligible effect on gas exchange related parameters and conductance of electrons transport chain (gETC). Under salt, the prompt fluorescence (OJIP-curves) exhibits an increase in the O- and J-steps in S. viridis and much less for S. alterniflora. Flowing NaCl stress, a dramatic decline in the photosystem II (PSII) primary photochemistry was observed for S. viridis, as reflected by the drastic drop in Fv/Fm, Fv/Fo and ΦPSII; however, no substantial change was recorded for these parameters in S. alterniflora. Interestingly, we found an increase in the primary PSII photochemistry (ΦPSII) for S. alterniflora with increasing either NaCl concentration or NaCl treatment duration. The NPQ magnitude was strongly enhanced for S. viridis even at a low NaCl (50 mM); however, it remains unchangeable or slightly increased for S. alterniflora at NaCl levels above 400 mM. After NaCl treatment, we found an increase in both the proportion of oxidized P700 and the amount of active P700 in S. viridis and almost no change for S. alterniflora. Under salt, the net photosynthetic rate (A) and stomatal conductance (gs) measurements demonstrate that A decreases earlier in S. viridis, even after one week exposure to only 50 mM NaCl; in contrast, in S. alterniflora, the effect of NaCl on A and gs was minor even after exposure for two weeks to high NaCl levels. For S. viridis exposed to 50 mM NaCl for 12 d, carbon dioxide (CO2) at a concentration of 2000 µL L-1 could not fully restore A to the control (Ctrl) level. Conversely, in S. alterniflora, high CO2 can fully restore A for all NaCl treatments except at 550 mM. RNA-seq data shows a major impact of NaCl on metabolic pathways in S. viridis and we found a number of transcription factors potentially related to NaCl responses. For S. alterniflora, no major changes in the transcriptomic levels were recorded under NaCl stress. To confirm our data analysis of RNA-seq, we performed quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis for randomly selected four genes for each species (8 genes in total) and we found that our results (up- and/or down-regulated genes) are fully consistent and match well our RNA-seq data. Overall, this study showed drastically different photosynthetic and transcriptomic responses of a salt-tolerant C4 grass species and one salt-sensitive C4 grass species to NaCl stress, which suggests that S. alterniflora could be used as a promising model species to study salt tolerance in C4 or monocot species.


Subject(s)
Photosynthesis/drug effects , Poaceae/physiology , Sodium Chloride/pharmacology , Stress, Physiological , Transcriptome/drug effects , Carbon Dioxide/physiology , Electron Transport/drug effects , Photosystem II Protein Complex/drug effects , Poaceae/drug effects , Poaceae/genetics , Salt Tolerance , Salt-Tolerant Plants , Sequence Analysis, RNA
14.
Int J Mol Sci ; 21(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668582

ABSTRACT

Respiration is a major plant physiological process that generates adenosine triphosphate (ATP) to support the various pathways involved in the plant growth and development. After decades of focused research on basic mechanisms of respiration, the processes and major proteins involved in respiration are well elucidated. However, much less is known about the natural variation of respiration. Here we conducted a survey on the natural variation of leaf dark respiration (Rd) in a global rice minicore diversity panel and applied a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with Rd. This rice minicore diversity panel consists of 206 accessions, which were grown under both growth room (GR) and field conditions. We found that Rd shows high single-nucleotide polymorphism (SNP) heritability under GR and it is significantly affected by genotype-environment interactions. Rd also exhibits strong positive correlation to the leaf thickness and chlorophyll content. GWAS results of Rd collected under GR and field show an overlapped genomic region in the chromosome 3 (Chr.3), which contains a lead SNP (3m29440628). There are 12 candidate genes within this region; among them, three genes show significantly higher expression levels in accessions with high Rd. Particularly, we observed that the LRK1 gene, annotated as leucine rich repeat receptor kinase, was up-regulated four times. We further found that a single significantly associated SNPs at the promoter region of LRK1, was strongly correlated with the mean annual temperature of the regions from where minicore accessions were collected. A rice lrk1 mutant shows only ~37% Rd of that of WT and retarded growth following exposure to 35 °C for 30 days, but only 24% reduction in growth was recorded under normal temperature (25 °C). This study demonstrates a substantial natural variation of Rd in rice and that the LRK1 gene can regulate leaf dark respiratory fluxes, especially under high temperature.


Subject(s)
Genes, Plant , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Protein Kinases/genetics , Amino Acid Sequence , CRISPR-Cas Systems , Carbon Cycle , Carbon Dioxide/metabolism , Cell Respiration , Chlorophyll/metabolism , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Darkness , Gene Expression Regulation, Plant/radiation effects , Gene-Environment Interaction , Genome-Wide Association Study , Greenhouse Effect , Haplotypes/genetics , Hot Temperature , Oryza/genetics , Oryza/growth & development , Oryza/radiation effects , Photosynthesis , Plant Leaves/radiation effects , Plant Proteins/physiology , Polymorphism, Single Nucleotide , Protein Kinases/physiology , Sequence Alignment
15.
Sci Rep ; 10(1): 8883, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32483281

ABSTRACT

Clematis florida Thun (CfT) is an ornamental and medicinal plant. It is a cold resistant but heat sensitive species and deserves to be further investigated to improve its adaptability to heat stress. Exploring the molecular mechanism potential via an omic-analysis constitutes a promising approach towards improving heat tolerance of CfT. Two CfT lines, heat resistance (HR) and heat sensitive (HS), with differential thermotolerance capacities were used for the integrative analyses of proteomics and transcriptomes. Transcriptomes analysis showed that various pathways were significantly enriched including plant hormone signal transduction and carbon fixation pathways in prokaryotes. Proteomics study revealed the enrichment of some other pathways comprising antioxidant activity and carbohydrates metabolism. Based on combined transcriptomes and proteomics analyses and following heat stress treatment, a total of 1724 annotated genes were overlapped between both CfT lines. Particularly, 84 differential expressed genes (DEGs) were overlapped in both CfT lines. Fifteen out of these 84 genes were up-regulated solely for HR line (PS) but not for HS one (SG). This strongly suggests a potential prominent role for these genes in the thermotolerance process in PS line. We corroborate that two Hsps (Hsp18 and Hsp70) out of 20 detected proteins with higher expression levels in PS than in SG based on either global transcripts or proteins levels. According to the transcriptomes and proteomics analyses, 6 proteins and their corresponding genes were found to be significantly abundant in HR line (PS). Data are available via ProteomeXchange with identifier PXD018192. The expressions levels of these 6 genes were checked also for both CfT lines to evaluate their potential contributions in the heat tolerance process. Thus, their expression levels were approximately 2~4 times higher in HR than in HS line. We provided as well a representative schematic model to highlight the key genes involved in ROS scavenging and photorespiratory pathway in CfT. This model could be helpful also in understanding the mechanism of heat tolerance in CfT.


Subject(s)
Clematis/growth & development , Gene Expression Profiling/methods , Gene Regulatory Networks , Proteomics/methods , Antioxidants/metabolism , Chromatography, Liquid , Clematis/genetics , Clematis/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Sequence Analysis, RNA , Tandem Mass Spectrometry
16.
J Exp Bot ; 71(16): 4944-4957, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32442255

ABSTRACT

Identifying new options to improve photosynthetic capacity is a major approach to improve crop yield potential. Here we report that overexpression of the gene encoding the transcription factor mEmBP-1 led to simultaneously increased expression of many genes in photosynthesis, including genes encoding Chl a,b-binding proteins (Lhca and Lhcb), PSII (PsbR3 and PsbW) and PSI reaction center subunits (PsaK and PsaN), chloroplast ATP synthase subunit, electron transport reaction components (Fd1 and PC), and also major genes in the Calvin-Benson-Bassham cycle, including those encoding Rubisco, glyceraldehyde phosphate dehydrogenase, fructose bisphosphate aldolase, transketolase, and phosphoribulokinase. These increased expression of photosynthesis genes resulted in increased leaf chlorophyll pigment, photosynthetic rate, biomass growth, and grain yield both in the greenhouse and in the field. Using EMSA experiments, we showed that mEmBP-1a protein can directly bind to the promoter region of photosynthesis genes, suggesting that the direct binding of mEmBP-1a to the G-box domain of photosynthetic genes up-regulates expression of these genes. Altogether, our results show that mEmBP-1a is a major regulator of photosynthesis, which can be used to increase rice photosynthesis and yield in the field.


Subject(s)
Oryza , Biomass , Oryza/genetics , Photosynthesis , Transcription Factors , Zea mays/genetics
17.
Int J Mol Sci ; 21(3)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019165

ABSTRACT

Alfalfa is the most extensively cultivated forage legume worldwide, and salinity constitutes the main environmental scourge limiting its growth and productivity. To unravel the potential molecular mechanism involved in salt tolerance in alfalfa, we accomplished a combined analysis of parallel reaction monitoring-based proteomic technique and targeted metabolism. Based on proteomic analysis, salt stress induced 226 differentially abundant proteins (DAPs). Among them, 118 DAPs related to the antioxidant system, including glutathione metabolism and oxidation-reduction pathways, were significantly up-regulated. Data are available via ProteomeXchange with identifier PXD017166. Overall, 107 determined metabolites revealed that the tricarboxylic acid (TCA) cycle, especially the malate to oxaloacetate conversion step, was strongly stimulated by salt stress. This leads to an up-regulation by about 5 times the ratio of NADPH/NADP+, as well as about 3 to 5 times in the antioxidant enzymes activities, including those of catalase and peroxidase and proline contents. However, the expression levels of DAPs related to the Calvin-Benson-Bassham (CBB) cycle and photorespiration pathway were dramatically inhibited following salt treatment. Consistently, metabolic analysis showed that the metabolite amounts related to carbon assimilation and photorespiration decreased by about 40% after exposure to 200 mM NaCl for 14 d, leading ultimately to a reduction in net photosynthesis by around 30%. Our findings highlighted also the importance of the supplied extra reducing power, thanks to the TCA cycle, in the well-functioning of glutathione to remove and scavenge the reactive oxygen species (ROS) and mitigate subsequently the oxidative deleterious effect of salt on carbon metabolism including the CBB cycle.


Subject(s)
Antioxidants/pharmacology , Medicago sativa/drug effects , Metabolome/drug effects , Photosynthesis , Plant Proteins/metabolism , Proteome/analysis , Salt Stress , Medicago sativa/growth & development , Medicago sativa/metabolism , Reactive Oxygen Species/metabolism
18.
Plant Sci ; 292: 110385, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32005390

ABSTRACT

Root-derived abscisic acid (ABA) is known to regulate shoot physiology, such as stomata closure. Conversely, the basipetal regulatory effect of shoot-derived ABA is poorly understood. Herein, we report that simulation of shoot-ABA accumulation by exogenous application of ABA to shoots basipetally stimulates primary root (PR) growth. ABA applied to shoots accelerates root cell division, as evidenced by the increase in meristem size and cell number and the intensity of CYCB1;1::GFP (a mitosis marker). Root ABA content was not changed following shoot ABA application, although the ABA reporter line RAB18::GFP showed an increase in ABA in the cotyledons. Shoot-ABA application increases basipetal auxin transport by 114 %. Shoot-ABA-promoted PR growth can be abolished by attenuating basipetal auxin flux using 2,3,5-triiodobenzoic acid (TIBA, an auxin transport inhibitor), demonstrating that ABA promotes PR growth by increasing basipetal auxin transport. Root cell elongation, evaluated by the total length of the first 7 cells in the elongation zone (EZ), was increased by 56 % following shoot-ABA application. The cell walls of the root EZ were alkalinized by ABA, as exhibited by 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt staining. Higher pH promotes both PR growth and cell elongation. Thus, shoot-ABA promotes cell elongation by alkalinizing the cell wall. In light of our results, we provide a representative detailed model of the basipetal regulatory effect of ABA on PR growth.


Subject(s)
Abscisic Acid/pharmacology , Arabidopsis/physiology , Plant Growth Regulators/pharmacology , Plant Roots/physiology , Signal Transduction , Abscisic Acid/administration & dosage , Arabidopsis/drug effects , Biological Transport , Cell Division/drug effects , Meristem/drug effects , Meristem/physiology , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/metabolism
19.
Data Brief ; 28: 105004, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31909108

ABSTRACT

This data article describes the analysis of sudden heat stress (SHS) induced transcriptomes and metabolism in SQ maize cultivar (Zea mays L. cv. Silver Queen). Plants were grown under elevated CO2 in both field based open top chambers (OTCs) and indoor growth chamber conditions [1]. After 20 days after radicle emergence, intact leaf section of maize was exposed for 2 hours to SHS treatment. Samples were stored in liquid nitrogen immediately and used thereafter for metabolism and transcriptomes determinations. Metabolism consisting of 37 targeted metabolites together with corresponding reference standard were determined by gas chromatography coupled to mass spectrometry (GC-MS). Total RNA was extracted using TRIzol® reagent according to the manufacturer's instructions (Invitrogen, Carlsbad, CA). RNA integrity was assessed using RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA). Transcriptomes were determined by Illumina Hiseq 4000 platform. Further interpretation and discussion on these datasets can be found in the related article entitled "Elevated CO2 concentrations may alleviate the detrimental effects of sudden heat stress on photosynthetic carbon metabolism in maize" [1].

20.
Plant Physiol ; 175(1): 248-258, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28739819

ABSTRACT

Mining natural variations is a major approach to identify new options to improve crop light use efficiency. So far, successes in identifying photosynthetic parameters positively related to crop biomass accumulation through this approach are scarce, possibly due to the earlier emphasis on properties related to leaf instead of canopy photosynthetic efficiency. This study aims to uncover rice (Oryza sativa) natural variations to identify leaf physiological parameters that are highly correlated with biomass accumulation, a surrogate of canopy photosynthesis. To do this, we systematically investigated 14 photosynthetic parameters and four morphological traits in a rice population, which consists of 204 U.S. Department of Agriculture-curated minicore accessions collected globally and 11 elite Chinese rice cultivars in both Beijing and Shanghai. To identify key components responsible for the variance of biomass accumulation, we applied a stepwise feature-selection approach based on linear regression models. Although there are large variations in photosynthetic parameters measured in different environments, we observed that photosynthetic rate under low light (Alow) was highly related to biomass accumulation and also exhibited high genomic inheritability in both environments, suggesting its great potential to be used as a target for future rice breeding programs. Large variations in Alow among modern rice cultivars further suggest the great potential of using this parameter in contemporary rice breeding for the improvement of biomass and, hence, yield potential.


Subject(s)
Biomass , Oryza/metabolism , Photosynthesis , Plant Leaves/metabolism , Light , Linear Models , Oryza/growth & development , Photosynthesis/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...